15.2 偏微分方程
ReacTran 的几个关键函数介绍
一维热传导方程
参数 ,边界条件 ,初始条件 。
library(ReacTran)
N <- 100
xgrid <- setup.grid.1D(x.up = 0, x.down = 1, N = N)
x <- xgrid$x.mid
D.coeff <- 0.01
Diffusion <- function(t, Y, parms) {
tran <- tran.1D(
C = Y, C.up = 0, C.down = 1,
D = D.coeff, dx = xgrid
)
list(
dY = tran$dC,
flux.up = tran$flux.up,
flux.down = tran$flux.down
)
}
yini <- sin(pi * x)
times <- seq(from = 0, to = 5, by = 0.01)
out <- ode.1D(
y = yini, times = times, func = Diffusion,
parms = NULL, dimens = N
)image(out,
grid = xgrid$x.mid, xlab = "times",
ylab = "Distance", main = "PDE", add.contour = TRUE
)
图 15.2: 一维热传导方程的数值解热力图
二维拉普拉斯方程
边界条件
它有解析解
其中
fn <- function(x, y) {
sin(pi * x) * cosh(pi * y)
}
x <- seq(0, 1, length.out = 101)
y <- seq(0, 1, length.out = 101)
z <- outer(x, y, fn)image(z, col = terrain.colors(20))
contour(z, method = "flattest", add = TRUE, lty = 1)
图 15.3: 解析解的二维图像
persp(z,
theta = 30, phi = 20,
r = 50, d = 0.1, expand = 0.5, ltheta = 90, lphi = 180,
shade = 0.1, ticktype = "detailed", nticks = 5, box = TRUE,
col = drapecol(z, col = terrain.colors(20)),
border = "transparent",
xlab = "X", ylab = "Y", zlab = "Z",
main = ""
)
图 15.4: 解析解的三维透视图像
求解 PDE
dx <- 0.2
xgrid <- setup.grid.1D(-100, 100, dx.1 = dx)
x <- xgrid$x.mid
N <- xgrid$N
uini <- exp(-0.05 * x^2)
vini <- rep(0, N)
yini <- c(uini, vini)
times <- seq(from = 0, to = 50, by = 1)
wave <- function(t, y, parms) {
u1 <- y[1:N]
u2 <- y[-(1:N)]
du1 <- u2
du2 <- tran.1D(C = u1, C.up = 0, C.down = 0, D = 1, dx = xgrid)$dC
return(list(c(du1, du2)))
}
out <- ode.1D(
func = wave, y = yini, times = times, parms = NULL,
nspec = 2, method = "ode45", dimens = N, names = c("u", "v")
)